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OCEAN ACOUSTIC PROPAGATION PREDICTIONS FIROM AVERAGED SOUND SP[EDS
COMPARED TO INDIVIDUAL SOUND SPEEDS

Roger M. Oba. Robert A. Zingarelli, and Stanley A Chsn-Bing

Numerical Modeling Division. NOARL, Stennis Space Center, MS 395-'9.5004 USA

Abstract: Wave propagation through volume randomness models much ocean acoustic behavior
Random sound speed introduces non-linearity in the differential equations for the ensemble averages.
This leads to results which can be significantly different than if an averaged volume parameters, such
as sound speed, are used in a deterministic equation. We examine some theoretical aspects of
randomness in the normal mode a.-.J praubolic equations. As an example, transmission losses ir
several specific examples are computed where differences result

INTRODUCTION

The study of waves through random media has been active for about four decades and has several
comprehensive reviews, including Ishimayu (1978) and Flatti (1983) (which emphasizes ocean
acoustics). One wishes to know about the average solution to a wave equation with uncertain sound
speed. Frisch (1968) points out that this type of problem is nonlinear in its dependence on the
cocfficicnts. As an introductory example, consider the one dimensional wave equation with constant

sound spccd u. = C2.' with initial values u(OX) = f(X). u,(O,z) a 0. This problem has solutions

that can be expressed u(t,x) = M)f(x -ct) +f(x +ct)j. A probability disuibution of sound speeds

give averages of the form (f) = JfdP(c) =f/(c)dc. The average solution convolves initial values

with a time dependent probability distribution:

For example, the normal distribution 0(c)= (oa42•/ )-i exp--(c- co)2 /2 9 J] and the initial

condition, f(x)=e"s. give an average solution u(e,x)=ee•coskcoiexp(-4ko]aj 12). This shows
attenuation of the mean field. The avenge solution contains information about the uncertainy as
decay with time: it behaves differently from the simple oscillatory solution for the averaged sound
speed. One can also show saturation phenomenon, i.e., variations comparable to amplitude as t
bccomcs large. In the same case, but given boundary values at x =0 and radiation conditions for
x - instead, one can show phase speed of the average solution is less than the average phase
speed. Note, however, that the solution is linear in the initial conditions, which means the average of
initial conditions gives the solution equal to the average of solutions with those initial conditions.

EXACT SOLUTIONS TO RANGE INDEPENDENT CASE

The source of the non-linearity in this case is the inversion of the differential operator to find the
solution. To see this, let us consider the case of a horizontally stratified ocean model with flat
pressur release top surface and bottom at -h which models the trapped modes of the Pekeris two fluid
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model (,f Kinsler et al. (1982)). When this is dnvcn by a conunuous wave. plini source "s re•duc•1
to a two-dimensiomled HeLmhoq•zeuation, which msaxi-sym-e~nc, r~nge iske in form os obt-i

Ir-d, ,+ 2 + k 2n2  )=(2r)lf 6(. -z ) r (,&) ).

Bou funditeons on the top are u(z 0) = 0 and the bottom k cos 0 (,a t- h) - sin 0 u, (t.a-h j = 0

This leads to a completely discrete spect r ee. Contiuous s luctrm can be i tated completely
anralogously, w th integ ration over the speWtrwn rather than summation. This a ssumption pf Tlus t
the more complicated case where a fixed part of the spectrum is discrtete rin some parts of iU~e 1

probability spave and continuous in overse To isolate tne a no n-Liner step, use n ti Honl transforn)
method in Alduwapia and Kellsr (1977). Define the Hankve trae sfof and its inverse by

In the ( -ankel uavesformed equation substi ouse , = t o obtain
id,' + k'(n' + a')]/= 3(: -:0). (4)

The solutions may now mie expressed as inverse Hankel tranforrs of the the Green's function- First
define two fundamental solutions: ofpl( ) which matches bottom boundary condition ande r(aesl

which matches top boundary condineon.ge 7wGreen's function solution is
G(z, zo) = W-1fj(zj)/2(z.,), (5)

twherez st = min(z, z t). z, = max(z, zo) and the Wonskian is W = W(fa)t = i ., f2 -- f)f,. Thus the

solution to wave equation is the inverse Hankel transform of Green's function

u(rnz) = ii-)G. (6)
(6) uses a singce z-dehpndent sound speed predv. 71e average of solutions for many profiles is

(-G)a = H-' E(G),= m1 -If, f (10)

S(Gc) is an averaged Green's function, athd, obviously. one canot simply pull the averages into its
numeraor and denominator separately. One could deform pontot of inverse Hankel Itfor to
obtain "branch" cuts instead of poles for th normal mode contributions. However. the same result
follows from normal mode theory with averaging,

NORMAL MODE REPRESENTATION

Ahluwalia and Keller (1977) obtain the range independent normal mode representation of solution

A.

It has terms satisfying the right radiation condition if the radial function is Vr.(r) =H~o")(kua.r). The

coefficients depend on source depth according to A, --#(zo) where vertical equation is

la,' + P=(d + a.2))10.(z) = 0. (9)
The asymptotic behavior of vertical eigenvalues is

a,.2 - -h -2 (2xm + 0) 1. m --4 go. (10)

3S., q = k~n2. Clearly the eigenvalues az. = a. will change as q changes. One can quantify this as a
i ~ functional derivative. First, rewrite the z equation (9) (' is r differentiation)

0; +(q - a,)Oq - 0(il)

!.Let q vary according to q q + E p, then one can compute the Fritobet derivative (see Ito et al.
S: (1987))

0q.#., - o(q, p) = o'(q)[ pl= -(1 2)
C.0
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Difcrentiate entire equation (I ) with respect to e to obtain
4,;-, +t(q -a aq)q P -+ (p - acd,v ) q =o. 3

Pic inner prorduct is i 'f~g) = j°, ftz,)g~z)dLz - For nornizlized eigenvalucs, one dtMlerenuaics tile

normality condition to find that

0 = (0", 0, )4 2(0q.P,. #q ) (14)

Take inner product oi 0, with differentiated equation (13). and integrate by pats with respect to

Since the boundary conditions for *, are constant, they carry over to #4.P. Tlus gives Ftrt-let
derivative of eigenvalues

da(q){pl = a,, = (p0q.0,). €

As a simple demonstration, take sound speed constant q = 0. 0(0) = O(K) = 0. k = 1. and h = x,

then =acf. = -1 and 0=mz. (15) becomes dat(q) p]=2/xzJ p.(z)sin mzdz.

Also, one may apply (15) to compute average contribution from each mode, if the probability
distribution of the speeds can be mparametrized by a = (z.. If q = q(o), p = dq/d then one

may compute the ct dependence by dcr,,,(qXpldP(ca,) = dP(aw).

Turn now to the calculation of the average mode's contribution when the sound speed is constant, but
statistically uncertain. This contribution will now depend on many horizontal wave numbers rather

than just one. lfb, =(nx+ O)/h and a.= Vk 2 -(anir+6) 2 - ,the series (8) becomes

u P.Z) = sinbzo sinbz H('"(a.r), (161

For a rigid bottom condition pick 8=1/2. Take a uniform probability distribution over a small
interval: dP (k )=1/(2c). ko - E < k < ko + e. Three cases iseaccording t whether the eigenvalue
for the probabilisucally distributed mode is always positive, always negative, or spread around zero.
The last case includes the previous two, so consider it. Suppose that the sound speed distribution is
such that the eigenvalues are in a small band centered about zero: ko=(nx +O)lh, = k - kj. One

finds a. - [2koKs]". Suppose r is large enough that one may use the asymptotic form
H,')). (. r)- L "-"1I ep(F2k r12

K'1-__V j2k=" (17)
For a single term of (16), only the Hankel function is affected by variation in eigenvalues. Thus the
average of a term of (16) can be written as a product of the sines times an integral involving the

Hankel function. Let s = r424ic, that integral becomes

S'-'(ar)dP(k){ e $1/2 ds-i :CY2 ds}

- i+l irý/-ii) -v(V.r4Ffi-l (18)

These incomplete gamma functions appear instead of Hankel functions for V. in (16).

Uncertainty in the bottom condi!ion.in the equations (16) give! anotherexample. Onc may model the
uncertainty in the difference between the velocity of two fluid layers by random bottom boundary
condition. Set k=(nw+Qo)/h,dP(e)=de12re 0o-e<0<8o+c, hi=6-00. Thusb.=k+t.


